Определение параллельности прямой и плоскости. Взаимное расположение прямой и плоскости в пространстве

Урок 4. параллельность прямых, прямой и плоскости – Геометрия – 10 класс – Российская электронная школа

Определение параллельности прямой и плоскости. Взаимное расположение прямой и плоскости в пространстве

Геометрия, 10 класс

Урок №4. Параллельность прямых, прямой и плоскости

Перечень вопросов, рассматриваемых в теме

  1. Определение параллельных прямых;
  2. Теорема о единственности прямой, параллельной данной, проходящей через данную точку;
  3. лемма о двух параллельных прямых;
  4. теорему о параллельности трех прямых;
  5. определение параллельных прямой и плоскости;
  6. признаком параллельности прямой и плоскости.

Глоссарий по теме

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые − прямые, которые не лежат в одной плоскости.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл.– М.: Просвещение, 2014. 255 с.

Дополнительная литература:

Зив Б. Г. Дидактические материалы. Геометрия 10 кл. – М.: Просвещение, 2014. 96 с.

Глазков Ю. А., Юдина И. И., Бутузов В.Ф. Рабочая тетрадь. Геометрия 10 кл.-М.: Просвещение, 2013. 65 с.

Теоретический материал для самостоятельного изучения

Геометрия, которую мы изучаем, называется евклидовой, по имени древнегреческого ученого Евклида (3 век до нашей эры), который создал целый труд по математике под названием «Начала». В данной книге есть раздел о параллельных прямых.

В советском энциклопедическом словаре слово «параллельность» переводится с греческого языка, как «идущий рядом».

В средние века параллельность обозначалась знаком «=». В 1557 году Р. Рекордом для обозначения равенства был введен знак «=», которым мы пользуемся сейчас, а параллельность стали обозначать «║».

В книге «Начала» определение параллельных прямых звучало так «прямые, лежащие в одной плоскости и будучи бесконечно продолжены в обе стороны, ни с той, ни с другой стороны не пересекаются». Это определение почти не отличается от современного.

В области параллельных прямых работало очень много учёных: Н.И. Лобаческий (18-19 век); Аббас ал-Джаухари (работал в Багдаде в 9 веке); Фадл ал-Найризи (Богдад 10 век); Герард (Италия 12 век); Иоганн Генрих Ламберт (Берлин) и многие другие.

Каково расположение 2-х прямых на плоскости (совпадают, пересекаются, параллельны) (рис. 1 а, б, в).

Перейдем к взаимному расположению 2-х прямых в пространстве. Как и в планиметрии, две различные прямые в пространстве либо пересекаются в одной точке, либо не пересекаются (не имеют общих точек).

Но второй случай допускает две возможности: прямые лежат в одной плоскости (параллельны) или прямые не лежат в одной плоскости.

В первом случае они параллельны, а во втором – такие прямые называются скрещивающимися.

Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.

Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.

Проиллюстрировать данные определения наглядно нам поможет куб.

Давайте укажем некоторые пары параллельных прямых:

AB||A₁B₁; AB|| CD; A₁B₁||C₁D₁; CD||C₁D₁; AD||A₁D₁; BC||B₁D₁; AD||BC; A₁D₁||B₁C₁.

А теперь рассмотрим некоторые пары скрещивающихся прямых, как мы отметили, они не должны лежать в одной плоскости:

AB A₁D₁; AB B₁C₁; CD A₁D₁; CD B₁C₁; BC C₁D₁; BC A₁B₁; AB B₁C₁; AB A₁D₁.

Теорема. Через любую точку пространства, не лежащую на данной прямой, проходит прямая, параллельная данной, и притом только одна.

  1. М и а задают плоскость α
  2. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с точкой М и прямой а, т.е. в плоскости α.
  3. В плоскости α через точку М проходит прямая, параллельная прямой а, и притом только одна- это нам известно из кураса планиметрии.
  4. На чертеже эта прямая обозначена буквой b .
  5. Следовательно, b-единственная прямая, проходящая через точку М паралельно прямой а.

Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.

Аналогично определяется праралельность отрезка и прямой, а так же паралельность двух лучей.

Лемма. Если одна из двух паралельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.

  1. Рассмотрим две параллельные прямые a и b и допустим, что прямая b пересекает плоскость α в точке M(а рис.).
  2. Мы знаем, что через параллельные прямые a и b можно провести только одну плоскость β. (теорема)
  1. Так как точка M находится на прямой b, то M также принадлежит плоскости β (б рис.). Если у плоскостей α и β есть общая точка M, то у этих плоскостей есть общая прямая p, которая является прямой пересечения этих плоскостей (4 аксиома).
  1. Прямые a, b и c находятся в плоскости β.

Если в этой плоскости одна из параллельных прямых b пересекает прямую p, то вторая прямая a тоже пересекает p.

  1. Точку пересечения прямых a и p обозначим за N.

Так как точка N находится на прямой p, то N находится в плоскости α и является единственной общей точкой прямой a и плоскости α.

  1. Значит, прямая a пересекает плоскость α в точке N.

Нам известно из курса планиметрии, что если три прямые лежат в одной плоскости и две из них параллельны третьей, то эти две прямые параллельны. Похожее утверждение имеет место и для трех прямых в пространстве.

Теорема. Если две прямые параллельны третьей прямой, то они параллельны.

Дано: a∥c и b∥c

Доказать: a∥b

Доказательство:

Выберем точку M на прямой b.

Через точку M и прямую a, которая не содержит эту точку, можно провести только одну плоскость α (Через прямую и не лежащую на ней точку можно провести только одну плоскость).

Возможны два случая:

1) прямая b пересекает плоскость α или 2) прямая b находится в плоскости α.

Пусть прямая b пересекает плоскость α.

Значит, прямая c, которая параллельна прямой b, тоже пересекает плоскость α. Так как a∥c, то получается, что a тоже пересекает эту плоскость.

Но прямая a не может одновременно пересекать плоскость α и находиться в плоскости α. Получаем противоречие, следовательно, предположение, что прямая b пересекает плоскость α, является неверным.

Значит, прямая b находится в плоскости α.

Теперь нужно доказать, что прямые a и b параллельны.

Пусть у прямых a и b есть общая точка L.

Это означает, что через точку L проведены две прямые a и b, которые параллельны прямой c. Но по второй теореме это невозможно. Поэтому предположение неверное, и прямые a и b не имеют общих точек.

Так как прямые a и b находятся в одной плоскости α и у них нет общих точек, то они параллельны.

Если две точки прямой лежат в данной плоскости, то по аксиоме А₂ вся прямая лежит в этой плоскости. Из этого следует, что возможны три расположения прямой и плоскости:

    1. прямая и плоскость имеют только одну общую точку, т.е. пересекаются
    1. прямая и плоскость не имеют ни одной общей точки

Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Обозначение: a||α.

Наглядный пример, который дает представление о прямой, параллельной плоскости- это линия пересечения стены и потолка-она параллельна плоскости пола.

Теорема (Признак параллельности прямой и плоскости)
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой на этой плоскости, то эта прямая параллельна данной плоскости. 

Доказательство:
Доказательство проведем от противного. Пусть a не параллельна плоскости α, тогда прямая a пересекает плоскость в некоторой точке A. Причем A не находится на b, так как a∥b. Согласно признаку скрещивающихся прямых, прямые a и b скрещивающиеся. 

Мы пришли к противоречию. Так как согласно данной информации a∥b, они не могут быть скрещивающимися. Значит, прямая a должна быть параллельна плоскости α.

Существует еще два утверждения, которые используются при решении задач:

  1. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
  2. Если одна из двух параллельных прямых параллельна данной плоскости, то другая прямая либо тоже параллельна данной плоскости, либо лежит в этой плоскости.

Примеры и разбор решения заданий тренировочного модуля

№1.

Тип задания: Ввод с клавиатуры пропущенных элементов в тексте

Дано: в ∆ АВС КМ − средняя линия, КМ=5; ACFE- параллелограмм.

Найти: EF

Решение: Т.к. КМ − средняя линия, то АС= 2·КМ, то АС=2·7=10

Т.к. ACFE − параллелограмм, то АС=EF=10

Ответ: EF=10

№2.

Тип задания: Единичный / множественный выбор

Точка М не лежит в плоскости ромба ABCD. На отрезке АМ выбрана точка Е так, что MЕ:ЕА=1:3. Точка F – точка пересечения прямой МВ с плоскостью CDE. Найдите АВ, если AD= 8 cм.

    1. АВ=2 см
    2. АВ=4 см
    3. АВ=5 см
    4. АВ=10 см

Решение:

MC

Т.к. AD||BC||FK, следовательно, треугольники MFK и MBC- подобны (по трем углам). Значит

. BC=AD= 8 см;

FK=BC:4=8:4=2

Ответ: 2. АВ=4 см.

Источник: https://resh.edu.ru/subject/lesson/6065/conspect/

Параллельные прямая и плоскость, признак и условия параллельности прямой и плоскости, параллельность прямой и плоскости определение

Определение параллельности прямой и плоскости. Взаимное расположение прямой и плоскости в пространстве

Статья рассматривает понятия параллельность прямой  и плоскости.Будут рассмотрены основные определения и приведены примеры.  Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.

Параллельные прямые и плоскость – основные сведения

Определение 1

Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.

Параллельность обозначается «∥». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a∥α. Рассмотрим рисунок, приведенный ниже.

Считается, что прямая a, параллельная плоскости α и плоскость α, параллельная прямой a, равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.

Параллельность прямой и плоскости – признак и условия параллельности

Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости.Предварительно рекомендуется изучить определение параллельных прямых.

Теорема 1

Если заданная прямая a, не лежащая в плоскости α, параллельна прямой b, которая принадлежит плоскости α, тогда прямая a параллельна плоскости α.

Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.

Теорема 2

Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.

Подробное доказательство рассмотрено в учебнике 10-11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.

Теорема 3

Для параллельности прямой a, не принадлежащей плоскости α, и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.

Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.

Доказательство 

Допустим, прямая а в систему координат Оху задается каноническими уравнениями прямой в пространстве , которые имеют вид x-x1ax=y-y1ay=z-z1az или параметрическими уравнениями прямой в пространстве x=x1+ax·λy=y1+ay·λz=z1+az·λ, плоскостью α с общими уравнениями плоскости Ax+By+Cz+D=0.

Отсюда a→=(ax, ay, az) является направляющим вектором с координатами прямой а, n→=(A, B, C) – нормальным вектором заданной плоскости альфа.

Чтобы доказать перпендикулярность n→=(A, B, C) и a→=(ax, ay, az), нужно использовать понятие скалярного произведения. То есть при произведении a→, n→=ax·A+ay·B+az·C результат должен быть равен нулю из условия перпендикулярности векторов.

Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a→, n→=ax·A+ay·B+az·C. Отсюда a→=(ax, ay, az) является направляющим вектором прямой a с координатами, а n→=(A, B, C) – нормальным вектором плоскости α.

Пример 1

Определить, параллельны ли прямая x=1+2·λy=-2+3·λz=2-4·λ с плоскостью x+6y+5z+4=0.

Решение

Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M(1, -2, 2) не подходят. При подстановке получаем, что 1+6·(-2)+5·2+4=0⇔3=0.

Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x=1+2·λy=-2+3·λz=2-4·λимеют значения a→=(2, 3, -4).

Нормальным вектором для плоскости x+6y+5z+4=0 считается n→=(1, 6, 5). Перейдем к вычислению скалярного произведения векторов a→ и n→. Получим, что a→, n→=2·1+3·6+(-4)·5=0.

Значит, перпендикулярность векторов a→ и n→ очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.

Ответ: прямая с плоскостью параллельны.

Опиши задание 

Пример 2

Определить параллельность прямой АВ в координатной плоскости Оуz, когда даны координаты A(2, 3, 0), B(4, -1, -7).

Решение

По условию видно, что точка A(2, 3, 0) не лежит на оси Ох, так как значение x не равно 0.

Для плоскости Oxz вектор с координатами i→=(1, 0, 0) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой AB как AB→.

Теперь при помощи координат начала и конца рассчитаем координаты вектора AB. Получим, что AB→=(2, -4, -7).

Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов AB→=(2, -4, -7) и i→=(1, 0, 0), чтобы определить их перпендикулярность.

Запишем AB→, i→=2·1+(-4)·0+(-7)·0=2≠0.

Отсюда следует, что прямая АВ с координатной плоскостью Оyz не являются параллельными.

Ответ: не параллельны.

Не всегда заданное условие способствует легкому определению доказательства параллельности прямой  и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α. Существует еще одно достаточное условие, при помощи которого доказывается параллельность.

При заданной прямой a  с помощью уравнения  двух пересекающихся плоскостей A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0, плоскостью α – общим уравнением плоскости  Ax+By+Cz+D=0.

Теорема 4

Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0.

Доказательство

Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат Охуz не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:

A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0, а также уравнению плоскости Ax+By+Cz+D=0. 

Следовательно, система уравнений, имеющая вид A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0, называется несовместной.

Верно обратное: при отсутствии решений системы A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0 не существует точек в Охуz, удовлетворяющих всем заданным уравнениям одновременно.

Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 и уравнения Ax+By+Cz+D=0.

Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.

Система уравнений A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.

Пример 3

Доказать , что прямая x-1=y+2-1=z3 параллельна плоскости 6x-5y+13z-23=0.

Решение

Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:

x-1=y+2-1=z3⇔-1·x=-1·(y+2)3·x=-1·z3·(y+2)=-1·z⇔x-y-2=03x+z=0

Чтобы доказать параллельность заданной прямой x-y-2=03x+z=0 с плоскостью 6x-5y+13z-23=0 , необходимо уравнения преобразовать в систему уравнений x-y-2=03x+z=06x-5y+13z-23=0.

Видим, что она не решаема, значит прибегнем к методу Гаусса.

Расписав уравнения, получаем, что 1-10230106-51323~1-102031-60113-1113~1-102031-6000-913.

Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.

Делаем вывод, что прямая x-1=y+2-1=z3 и плоскость 6x-5y+13z-23=0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.

Ответ: прямая и плоскость параллельны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Не получается написать работу самому?

Доверь это кандидату наук!

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/parallelnye-prjamaja-i-ploskost-priznak-i-uslovija/

Введение в стереометрию. Параллельность

Определение параллельности прямой и плоскости. Взаимное расположение прямой и плоскости в пространстве

Важные аксиомы стереометрии

1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Таким образом, любая плоскость однозначно задается тремя точками, не лежащими на одной прямой: \(\pi=(ABC)\)(рис. 1).

2. Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в этой плоскости: \(a\in \pi\).
Говорят также, что плоскость содержит прямую: \(\pi\subset a\) (рис. 2).

3. Если две плоскости имеют общую точку, то они имеют и общую прямую, на которой лежат все общие точки этих плоскостей.
Таким образом, если плоскости пересекаются, то они пересекаются по прямой: \(\pi\cap \mu=p\).
Данная прямая \(p\) называется линией пересечения плоскостей (рис. 3).

Заметим, что плоскость обычно изображают в виде внутренности параллелограмма. Почему? Посмотрите, например, сбоку на стол. В виде какой фигуры выглядит столешница?

Следствия из аксиом

1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна (рис. 4).

2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 5).

Доказательство

1. Действительно, отметим на прямой \(a\) некоторые две точки \(A\) и \(B\). Тогда мы получим три точки \(A, B, C\), не лежащие на одной прямой. Через них можно провести единственную плоскость \(\pi\). А т.к. две выбранные точки \(A\) и \(B\) прямой лежат в этой плоскости, то и вся прямая лежит в этой плоскости.

2. Действительно, пусть \(O\) – точка пересечения данных прямых \(p\) и \(q\). Отметим еще по одной точке \(P\) и \(Q\) на каждой прямой (отличающиеся от точки \(O\)).

Получили три точки \(P, Q, O\), не лежащие на одной прямой. Через них проходит единственная плоскость \(\pi\). А т.к.

две точки каждой прямой лежат в этой плоскости, то и все точки каждой прямой будут лежать в этой плоскости. 

\[{\Large{\text{Параллельность в пространстве}}}\]

Определения

Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

Следствие 1

Через две параллельные прямые проходит плоскость, и притом только одна.

Теорема 1

Через любую точку \(A\) в пространстве, не лежащую на данной прямой \(b\), проходит прямая \(a\), параллельная данной, и притом только одна.

Доказательство

Через точку \(A\) и прямую \(b\) можно провести единственную плоскость (по аксиоме); пусть эта плоскость называется \(\pi\).

Прямая \(a\), параллельная прямой \(b\), должна лежать с ней в одной плоскости, а также должна проходить через точку \(A\), следовательно, должна лежать в плоскости \(\pi\).

Но в плоскости через точку, не лежащую на прямой, можно провести ровно одну прямую, параллельную данной (теорема планиметрии), чтд.

Теорема 2

Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.

Доказательство

Пусть \(a\parallel b\) и \(a\cap \pi=A\). Докажем, что и \(b\) пересечет плоскость \(\pi\) (назовем их точку пересечения \(B\)).

Проведем через прямые \(a\) и \(b\) плоскость \(\mu\) (это возможно в силу определения параллельных прямых).

Тогда плоскости \(\pi\) и \(\mu\) имеют общую точку \(A\), следовательно, имеют и общую прямую \(p\), на которой лежат все их общие точки. Но т.к.

\(b\parallel a\) и \(a\capp=A\), то прямая \(b\) тоже пересекает прямую \(p\). Значит, прямая \(b\) пересекает и плоскость \(\mu\) (это и есть точка \(B\)).

Теорема 3: о параллельности трех прямых

Если прямая \(a\) параллельна прямой \(b\), а та в свою очередь параллельна прямой \(c\), то \(a\parallel c\).

Доказательство

1) Отметим некоторую точку \(C\) на прямой \(c\) и проведем плоскость \(\pi\) через прямую \(a\) и точку \(C\). Прямая \(c\) будет лежать в этой плоскости. Действительно, т.к.

прямая \(c\) и плоскость \(\pi\) имеют общую точку \(C\), то в противном случае прямая \(c\) будет пересекать эту плоскость. Но т.к. \(b\parallel c\), то и прямая \(b\) будет пересекать \(\pi\); а т.к.

\(a\parallel b\), то и прямая \(a\) будет пересекать эту плоскость. А это противоречит нашему построению.

2) Теперь прямые \(a\) и \(c\) лежат в одной плоскости, значит, они могут либо пересекаться, либо быть параллельны. Предположим, что \(c\) пересекает \(a\) в точке \(A\). Тогда получается, что через точку \(A\) проведены две прямые, параллельные прямой \(b\), что противоречит теореме 1. 

Определение

Существует три вида взаимного расположения прямой и плоскости:

1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости) — рис. 4;

2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость) — рис. 6;

3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).

Теорема 4: признак параллельности прямой и плоскости

Если прямая \(a\), не лежащая в плоскости \(\pi\), параллельна некоторой прямой \(p\), лежащей в плоскости \(\pi\), то она параллельна данной плоскости (рис. 7).

Доказательство

Докажем, что прямая \(a\) не может пересекать плоскость \(\pi\) (случай, что прямая лежит в плоскости, невозможен по условию). Предположим, что это не так.

Во-первых, проведем плоскость \(\mu\) через прямые \(a\) и \(p\) (значит, плоскости \(\pi\) и \(\mu\) пересекаются по прямой \(p\)). Во-вторых, пусть \(a\cap\pi=A\). Т.к. \(a\parallel p\), то точка \(A\) не может лежать на прямой \(p\).

Значит, плоскости \(\pi\) и \(\mu\) имеют еще одну общую точку \(A\), не лежащую на их линии пересечения, что противоречит аксиоме 3. Чтд.

Следствие 2

Пусть прямая \(p\) параллельна плоскости \(\mu\). Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\), то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\) (рис. 8).

Доказательство

Т.к. прямые \(m\) и \(p\) лежат в одной плоскости \(\pi\), то они могут быть либо параллельны, либо пересекаться, либо совпадать. Совпадать они не могут, потому что тогда \(p\in \mu\), а это противоречит условию. Если \(m\cap p=O\), то \(p\) пересекает плоскость \(\mu\) в точке \(O\), что опять же противоречит условию. Значит, \(m\parallel p\).

Следствие 3

Если прямые \(a\) и \(b\) параллельны и прямая \(a\) также параллельна плоскости \(\alpha\), то и прямая \(b\) либо параллельна, либо лежит в плоскости \(\alpha\).

Определение

Существует три типа взаимного расположения плоскостей в пространстве: совпадают (имеют три общие точки, не лежащие на одной прямой), пересекаются (имеют общие точки, лежащие строго на одной прямой), и не имеют общих точек.

Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.

Теорема 5: признак параллельности плоскостей

Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

Доказательство

Рассмотрим две плоскости \(\pi\) и \(\mu\) и в них пересекающиеся прямые \(a, b\) и \(a_1, b_1\) соответственно, такие что \(a\parallel a_1, \b\parallel b_1\). Докажем, что плоскости не имеют общих точек.

Предположим, что это не так. Пусть плоскости имеют общую точку, значит они имеют и общую прямую \(y\): \(\pi\cap \mu=y\). Данная прямая не может быть параллельна обеим прямым \(a\) и \(b\) (т.к. они все лежат в одной плоскости \(\pi\)), значит, хотя бы одну из этих прямых она пересекает.

Пусть это будет прямая \(a\), то есть \(a\cap y=Y\). Т.к. прямая \(y\) лежит и в плоскости \(\mu\), то \(Y\in \mu\), то есть прямая \(a\) имеет с плоскостью \(\mu\) общую точку \(Y\). Но это невозможно, т.к. по признаку параллельности прямой и плоскости прямая \(a\) параллельна плоскости \(\mu\).

Чтд.

Следствие 4

Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\), то линии пересечения плоскостей также параллельны:

\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]

Следствие 5

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны:

\[\alpha\parallel \beta, \ a\parallel b \LongrightarrowA_1B_1=A_2B_2\]

Источник: https://shkolkovo.net/theory/107

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.