Чему равна теорема виета. Формула теоремы виета, и примеры решения

Формула теоремы Виета, и примеры решения

Чему равна теорема виета. Формула теоремы виета, и примеры решения

Перед тем как перейти к теореме Виета, введем определение.                                                                        Квадратное уравнение вида x² + px + q = 0 называется приведенным. В этом уравнении старший коэффициент равен единице.

Например, уравнение x² — 3x — 4 = 0 является приведенным. Всякое квадратное уравнение вида ax² + bx + c = 0 можно сделать приведенным, для этого делим обе части уравнения на а ≠ 0. Например, уравнение 4x² + 4x — 3 = 0 делением на 4 приводится к виду: x² + x — 3/4 = 0.

                          Выведем формулу корней приведенного квадратного уравнения, для этого воспользуемся формулой корней квадратного уравнения общего вида:                                                                                                                                                        ax² + bx + c = 0

Приведенное уравнение x² + px + q = 0 совпадает с уравнением общего вида, в котором а = 1, b = p, c = q. Поэтому для приведенного квадратного уравнения формула принимает вид:

или

последнее выражение называют формулой корней приведенного квадратного уравнения, особенно удобно пользоваться этой формулой когда р — четное число.                                                                                                         Для примера решим уравнение x² — 14x — 15 = 0

В ответ запишем уравнение имеет два корня.

Для приведенного квадратного уравнения с положительным дискриминантом справедлива следующая теорема.

Теорема Виета

Если x1 и x2  — корни уравнения x² + px + q = 0, то справедливы формулы:

x1 + x2 = — р

x1 * x2  = q,    то есть сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Исходя из формулы корней приведенного квадратного уравнения имеем:

Складывая эти равенства, получаем: x1 + x2 = —р.

Перемножая эти равенства, по формуле разности квадратов получаем:

Отметим, что теорема Виета справедлива и тогда, когда дискриминант равен нулю, если считать, что в этом случае квадратное уравнение имеет два одинаковых корня: x1 = x2 = — р/2.

Не решая уравнения x² — 13x + 30 = 0 найдем сумму и произведение его корней x1 и x2. Дискриминант этого уравнения D = 169 — 120 = 49 > 0, поэтому можно применить теорему Виета: x1 + x2 = 13,  x1 * x2  = 30. Рассмотрим еще несколько примеров. Один из корней уравнения x² — рx — 12 = 0 равен x1 = 4.

Найти коэффициент р и второй корень x2 этого уравнения. По теореме Виета x1 * x2  = — 12,  x1 + x2 = — р.                   Так как x1 = 4, то 4×2 = — 12,  откуда x2 = — 3,  р = — (x1 + x2 ) = — (4 — 3) = — 1.

                                                                         В ответ запишем, второй корень x2 = — 3, коэффициент р = — 1.

Не решая уравнения x² + 2x — 4 = 0 найдем сумму квадратов его корней. Пусть x1 и x2  — корни уравнения. По теореме Виета x1 + x2 = — 2,  x1 * x2  = — 4. Так как x1²+ x2² = (x1 + x2)² — 2x1x2, тогда x1²+ x2² =(- 2)² -2 (- 4) = 12.

Найдем сумму и произведение корней уравнения 3x² + 4x — 5 = 0. Данное уравнение имеет два различных корня, так как дискриминант D = 16 + 4*3*5 > 0. Для решения уравнения воспользуемся теоремой Виета. Эта теорема доказана для приведенного квадратного уравнения. Поэтому разделим данное уравнение на 3.

Следовательно, сумма корней равна -4/3, а их произведение равно -5/3.

В общем случае корни уравнения  ax² + bx + c = 0 связаны следующими равенствами: x1 + x2 = — b/a,             x1 * x2  = c/a,  Для получения этих формул достаточно разделить обе части данного квадратного уравнения на а ≠ 0 и  применить к полученному приведенному квадратному уравнению теорему Виета.                                       Рассмотрим пример, требуется составить приведенное квадратное уравнение, корни которого x1 = 3, x2 = 4. Так как x1 = 3, x2 = 4— корни квадратного уравнения x² + px + q = 0, то по теореме Виета  р = — (x1 + x2) = — 7,    q = x1x2 = 12. В ответ запишем x² — 7x + 12 = 0.                                                                                                                     При решении некоторых задач применяется следующая теорема.

Теорема, обратная теореме Виета

Если числа р, q, x1, x2 таковы, что x1 + x2 = — р, x1 * x2  = q, то x1 и x2 — корни уравнения x² + px + q = 0. Подставим в левую часть x² + px + q вместо р выражение — (x1 + x2), а вместо q — произведение x1 * x2. Получим: x² + px + q = x² — (x1 + x2) х + x1x2 = x² — x1x — x2x + x1x2 = (x — x1) (x — x2).

                                              Таким образом, если числа р, q, x1 и x2 связаны этими соотношениями, то при всех х выполняется равенство x² + px + q = (x — x1) (x — x2), из которого следует, что x1 и x2 — корни уравнения  x² + px + q = 0.

Используя теорему, обратную теореме Виета, иногда можно подбором найти корни квадратного уравнения. Рассмотрим пример,  x² — 5x + 6 = 0. Здесь р = — 5, q = 6. Подберем два числа x1 и x2 так, чтобы                  x1 + x2 = 5,  x1 * x2  = 6.

 Заметив, что 6 = 2 * 3 , а 2 + 3 = 5, по теореме, обратной теореме Виета, получаем, что  x1 = 2, x2 = 3 — корни уравнения x² — 5x + 6 = 0.

Источник: https://prostoi-sovet.ru/teorema-vieta-formula-dlya-privedennogo-kvadratnogo-uravneniya.html

Теорема Виета, обратная формула Виета и примеры с решением для чайников

Чему равна теорема виета. Формула теоремы виета, и примеры решения

Франсуа Виет (1540-1603 гг) – математика, создатель знаменитых формул Виета

Теорема Виета нужна для быстрого решения квадратных уравнений (простыми словами).

Если более подробно, то теорема Виета – это сумма корней данного квадратного уравнения равняется второму коэффициенту, который взят с противоположным знаком, а произведение равно свободному члену. Это свойство обладает любым приведённым квадратным уравнением, у которого есть корни.

При помощи теоремы Виета можно легко решать квадратные уравнения путём подбора, поэтому скажем “спасибо” этому математику с мечем в руках за наш счастливый 7 класс.

Доказательство теоремы Виета

Чтобы доказать теорему, можно воспользоваться известными формулами корней, благодаря которым составим сумму и произведение корней квадратного уравнения. Только после этого мы сможем убедиться, что они равны и, соответственно, .

Допустим у нас есть уравнение: . У этого уравнения есть такие корни: и . Докажем, что , .

По формулам корней квадратного уравнения:

, .

1. Найдём сумму корней:

.

Разберём это уравнение, как оно у нас получилось именно таким:

= .

Шаг 1. Приводим дроби к общему знаменателю, получается:

= = .

Шаг 2. У нас получилась дробь, где нужно раскрыть скобки:

= = . Сокращаем дробь на 2 и получаем:

.

Мы доказали соотношение для суммы корней квадратного уравнения по теореме Виета.

2. Найдём произведение корней:

=

= = = = = .

Докажем это уравнение:

.

Шаг 1. Есть правило умножение дробей, по которому мы и умножаем данное уравнение:

.

Шаг 2. Далее выполняется умножение скобку на скобку (в числителе). Можно воспользоваться формулой сокращённого умножения (ФСУ) – формула разности, откуда получается:

.

Теперь вспоминаем определение квадратного корня и считаем:

= .

Шаг 3. Вспоминаем дискриминант квадратного уравнения: . Поэтому в последнюю дробь вместо D (дискриминанта) мы подставляем , тогда получается:

= .

Шаг 4. Раскрываем скобки и приводим подобные слагаемые к дроби:

.

Шаг 5. Сокращаем «4a» и получаем .

Вот мы и доказали соотношение для произведения корней по теореме Виета.

Важно!

Если вы не уверены, что справитесь с работой самостоятельно, обратитесь к профессионалам. Сдадим работу раньше срока или вернем 100% денег

Стоимость и сроки

ВАЖНО! Если дискриминант равняется нулю, тогда у квадратного уравнения всего один корень.

Доказательство обратной теоремы Виета

Шаг 1. Подставим в уравнение выражения для его коэффициентов:

Шаг 2. Преобразуем левую часть уравнения:

;

.

Шаг 3. Найдём Корни уравнения , а для этого используем свойство о равенстве произведения нулю:

или . Откуда и получается: или .

Примеры с решениями по теореме Виета

Пример 1

Задание

Найдите сумму, произведение и сумму квадратов корней квадратного уравнения , не находя корней уравнения.

Решение

Шаг 1. Вспомним формулу дискриминанта . Подставляем наши цифры под буквы. То есть, , – это заменяет , а . Отсюда следует:

. Получается:

. Если дискриминант больше нуля, тогда у уравнения есть корни. По теореме Виета их сумма , а произведение .

Выразим сумму квадратов корней через их сумму и произведение:

.

Ответ

7; 12; 25.

Пример 2

Задание

Решите уравнение . При этом не применяйте формулы квадратного уравнения.

Решение

У данного уравнения есть корни, которые по дискриминанту (D) больше нуля. Соответственно, по теореме Виета сумма корней этого уравнения равна 4, а произведение – 5. Сначала определяем делители числа , сумма которых равняется 4. Это числа «5» и «-1». Их произведение равно – 5, а сумма – 4. Значит, по теореме, обратной теореме Виета, они являются корнями данного уравнения.

Ответ

и

Пример 3

Задание

Найдите, если это возможно, сумму и произведение корней уравнения:

Решение

. Так как дискриминант меньше нуля, значит у уравнения нет корней.

Ответ

Нет корней.

Пример 4

Задание

Составьте уравнение, каждый корень которого в два раза больше соответствующего корня уравнения:

Решение

По теореме Виета сумма корней данного уравнения равна 12, а произведение = 7. Значит, два корня положительны.

Сумма корней нового уравнения будет равна:

, а произведение .

По теореме, обратной теореме Виета, новое уравнение имеет вид:

Ответ

Получилось уравнение, каждый корень которого в два раза больше: 

Итак, мы рассмотрели, как решать уравнение при помощи теоремы Виета. Очень удобно пользоваться данной теоремой, если решаются задания, которые связаны со знаками корней квадратных уравнений. То есть, если в формуле свободный член – число положительное, и если в квадратном уравнении имеются действительные корни, тогда они оба могут быть либо отрицательными, либо положительными.

А если свободный член – отрицательное число, и если в квадратном уравнении есть действительные корни, тогда оба знака будут разными. То есть, если один корень положительный, тогда другой корень будет только отрицательный.

Полезные источники:

  1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. Алгебра 8 класс: Москва “Просвещение”, 2016 – 318 с.
  2. Рубин А. Г., Чулков П. В. – учебник Алгебра 8 класс:Москва “Баласс”, 2015 – 237 с.
  3. Никольский С. М., Потопав М. К., Решетников Н. Н., Шевкин А. В. – Алгебра 8 класс: Москва “Просвещение”, 2014 – 300

Источник: https://NauchnieStati.ru/spravka/teorema-vieta-formuly-i-primery-s-resheniem/

Теорема Виета, формулы Виета

Чему равна теорема виета. Формула теоремы виета, и примеры решения

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a·x2+b·x+c=0 вида x1=-b+D2·a, x2=-b-D2·a, где D=b2−4·a·c, устанавливает соотношения x1+x2=-bax1·x2=ca. Это подтверждает и теорема Виета.

Теорема 1

В квадратном уравнении a·x2+b·x+c=0, где x1 и x2 – корни, сумма корней будет равна соотношению коэффициентов b и a, которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a, т. е. x1+x2=-bax1·x2=ca.

Доказательство 1

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны -ba и ca соответственно.

Составим сумму корней x1+x2=-b+D2·a+-b-D2·a. Приведем дроби к общему знаменателю -b+D2·a+-b-D2·a=-b+D+-b-D2·a. Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: -b+D+-b-D2·a=-b+D-b-D2·a=-2·b2·a. Сократим дробь на: 2-ba=-ba.

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x1·x2=-b+D2·a·-b-D2·a.

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: -b+D·-b-D4·a2.

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: -b+D·-b-D4·a2=-b2-D24·a2.

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: -b2-D24·a2=b2-D4·a2. Формула D=b2−4·a·c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b2−4·a·c:

b2-D4·a2=b2-(b2-4·a·c)4·a2

Раскроем скобки, приведем подобные слагаемые и получим: 4·a·c4·a2. Если сократить ее на 4·a, то остается ca. Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x1+x2=-b+D2·a+-b-D2·a=-b+D+-b-D2·a=-2·b2·a=-ba,x1·x2=-b+D2·a·-b-D2·a=-b+D·-b-D4·a2=-b2-D24·a2=b2-D4·a2==D=b2-4·a·c=b2-b2-4·a·c4·a2=4·a·c4·a2=ca.

При дискриминанте квадратного уравнения  равном нулю уравнение будет иметь только один корень.

Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня.

Действительно, при D=0 корень квадратного уравнения равен: -b2·a, тогда x1+x2=-b2·a+-b2·a=-b+(-b)2·a=-2·b2·a=-ba и x1·x2=-b2·a·-b2·a=-b·-b4·a2=b24·a2, а так как D=0, то есть, b2-4·a·c=0, откуда b2=4·a·c, то b24·a2=4·a·c4·a2=ca.

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x2+p·x+q=0, где старший коэффициент a равен 1.

В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением.

Для этого необходимо поделить обе его части на число a, отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Теорема 2

Сумма корней в приведенном квадратном уравнении x2+p·x+q=0  будет равна коэффициенту при x, который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x1+x2=−p, x1·x2=q.

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета.

Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения.

Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x1+x2=-ba, x1·x2=ac.

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Пример 1

Какая из пар чисел 1) x1=−5, x2=3, или 2) x1=1-3, x2=3+3, или 3) x1=2+72, x2=2-72 является парой корней квадратного уравнения 4·x2−16·x+9=0?

Решение

Найдем коэффициенты квадратного уравнения 4·x2−16·x+9=0. Это a=4, b=−16, c=9. В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна -ba, то есть, 164=4, а произведение корней должно быть равно ca, то есть, 94.

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x1+x2=−5+3=−2. Это значение отлично от 4, следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x1+x2=1-3+3+3=4.  Мы видим, что первое условие выполняется. А вот второе условие нет: x1·x2=1-3·3+3=3+3-3·3-3=-2·3. Значение, которое мы получили, отлично от 94. Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x1+x2=2+72+2-72=4 и x1·x2=2+72·2-72=22-722=4-74=164-74=94. Выполняются оба условия, а это значит, что  x1 и x2 являются корнями заданного квадратного уравнения.

Ответ: x1=2+72, x2=2-72

Опиши задание

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Пример 2

В качестве примера используем квадратное уравнение x2−5·x+6=0. Числа x1 и x2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x1+x2=5 и x1·x2=6. Подберем такие числа. Это числа 2 и 3, так как 2+3=5 и 2·3=6. Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x1+x2=-ba, x1·x2=ca.

Пример 3

Рассмотрим квадратное уравнение 512·x2−509·x−3=0. Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1, так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x1=1.

Теперь найдем второй корень. Для этого можно использовать соотношение  x1·x2=ca. Получается, что 1·x2=−3512, откуда x2=-3512.

Ответ: корни заданного в условии задачи квадратного уравнения 1 и -3512.

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x1 и x2. Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример 4

Напишите квадратное уравнение, корнями которого являются числа −11 и 23.

Решение

Примем, что x1=−11 и x2=23. Сумма и произведение данных чисел будут равны: x1+x2=12 и x1·x2=−253. Это значит, что второй коэффициент -12, свободный член −253.

Составляем уравнение: x2−12·x−253=0.

Ответ: x2−12·x−253=0.

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x2+p·x+q=0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак «+» или «-»;
  • если квадратное уравнение имеет корни и  если свободный член q является отрицательным числом, то один корень будет «+», а второй «-».

Оба этих утверждения являются следствием формулы x1·x2=q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Пример 5

Являются ли корни квадратного уравнения x2−64·x−21=0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x1·x2=−21. Это невозможно при положительных x1 и x2.

Ответ: Нет

Пример 6

При каких значениях параметра r квадратное уравнение x2+(r+2)·x+r−1=0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r, при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D=(r+2)2−4·1·(r−1)=r2+4·r+4−4·r+4=r2+8.

Значение выражения r2+8 положительно при любых действительных r, следовательно, дискриминант будет больше нуля при любых действительных r.

Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r.

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r, при которых свободный член r−1 отрицателен. Решим линейное неравенство r−1

Источник: https://Zaochnik.com/spravochnik/matematika/vyrazhenija/teorema-vieta-formuly-vieta/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.